black blue and yellow textile

ENGINEERING SIMULATION

1. Nuclear Radiation Simulation

  • Purpose:

    • Model radiation propagation, shielding effectiveness, and dose distribution in nuclear facilities, medical equipment, or space applications.

  • Key Software:

    • MCNP (Monte Carlo N-Particle)

    • ANSYS Fluent (with radiation modules)

    • GEANT4 (high-energy physics)

  • Simulation Parameters:

    • Radiation type (neutrons, gamma, alpha/beta particles)

    • Material interaction (cross-sections, attenuation coefficients)

    • Shielding design (lead, concrete, borated polyethylene thickness)

  • Outputs:

    • Dose rate maps (Sieverts/hour)

    • Shielding performance reports

    • Hot spot identification

  • Applications:

    • Nuclear reactor design

    • Radioactive waste storage

    • Medical imaging (PET scanners)

2. Air Flow Simulation (CFD for HVAC & Aerospace)

  • Purpose:

    • Analyze fluid dynamics for ventilation, aerodynamic performance, or contamination control.

  • Software Tools:

    • ANSYS Fluent/CFX

    • OpenFOAM (open-source)

    • Siemens Star-CCM+

  • Modeling Approach:

    • Turbulence models (k-ε, k-ω, LES)

    • Boundary conditions (velocity inlets, pressure outlets)

    • Multiphase flows (aerosols, particle tracking)

  • Key Metrics:

    • Airflow velocity profiles

    • Pressure drop calculations

    • Thermal comfort indices (PMV/PPD)

  • Use Cases:

    • Cleanroom airflow optimization

    • Aircraft wing aerodynamics

    • Data center cooling

3. Lighting Simulation

  • Purpose:

    • Predict illuminance levels, glare, and energy efficiency in architectural or industrial lighting design.

  • Tools:

    • DIALux (industry standard)

    • Relux

    • AGi32

  • Simulation Features:

    • Luminous flux distribution (lumens)

    • Daylight integration (using CIE sky models)

    • Material reflectance (e.g., walls, floors)

  • Outputs:

    • Lux contour maps

    • Unified Glare Rating (UGR)

    • Energy consumption (kW·h/year)

  • Applications:

    • Stadium lighting design

    • Roadway illumination

    • Office workspace ergonomics

4. Hydraulic Simulation

  • Purpose:

    • Model liquid flow behavior in pipelines, pumps, and open channels.

  • Software:

    • Bentley HAMMER (transient analysis)

    • EPANET (water distribution)

    • PIPE-FLO

  • Critical Analyses:

    • Steady-state flow rates (GPM, m³/s)

    • Transient (water hammer) effects

    • Cavitation risk assessment

  • Input Parameters:

    • Pipe roughness (Darcy-Weisbach coefficients)

    • Pump curves

    • Valve characteristics

  • Industrial Uses:

    • Municipal water supply networks

    • Oil/gas pipeline surge analysis

    • Cooling system design

5. Pipe Stress Simulation (FEA-Based)

  • Purpose:

    • Ensure piping systems withstand thermal expansion, pressure, and seismic loads.

  • Standards:

    • ASME B31.3 (Process Piping)

    • API 610 (Pump piping)

  • Software:

    • CAESAR II (industry standard)

    • AutoPIPE

    • ROHR2

  • Analysis Types:

    • Static stress (sustained loads)

    • Thermal expansion (displacement stresses)

    • Modal analysis (vibration frequencies)

  • Output Reports:

    • Stress intensity vs. allowable (kPa)

    • Nozzle load compliance (per API 610)

    • Support reaction forces

  • Applications:

    • Power plant piping

    • Offshore platform risers

    • Cryogenic piping systems

Comparative Analysis

  • Simulation Type Primary Physics Key Output Industry Sector

  • Nuclear Radiation Particle transport Dose rate maps Energy, Healthcare

  • Air Flow (CFD) Navier-Stokes equations Velocity/pressure fields HVAC, Aerospace

  • Lighting Radiometric calculations Lux/UGR distributions Architecture, Urban Planning

  • Hydraulic Bernoulli’s principle Flow rates, pressure drops Water, Oil & Gas

  • Pipe Stress Finite Element Analysis Stress profiles, displacements Process Plants, Power

Workflow Integration

  • Pre-Processing:

    • CAD geometry cleanup (e.g., removing leaks in pipe models)

    • Mesh generation (tetrahedral/hexahedral elements)

  • Solver Phase:

    • Setting convergence criteria (residuals < 1e-4)

    • HPC/cloud computing for large models

  • Post-Processing:

    • ANSYS CFD-Post or ParaView visualization

    • Automated report generation (Python scripts)